Skip to contents

Reconstructs the hierarchical relations between the three topic variables topics_tier_1, topics_tier_2 and topics_tier_3. Other than hierarchize_topics(), this function assumes that the three topic variables are always complete, i.e. that no (grand)parent topics of lower-tier topics are missing. This assumption is met by rfrnds() and rfrnd().

Usage

hierarchize_topics_fast(
  topics_tier_1 = character(),
  topics_tier_2 = character(),
  topics_tier_3 = character()
)

Arguments

topics_tier_1

First-tier topics. A character vector.

topics_tier_2

Second-tier topics. A character vector.

topics_tier_3

Third-tier topics. A character vector.

Value

A tibble with the columns topic_tier_1, topic_tier_2 and topic_tier_3.

See also

Other referendum topic functions: data_topics, hierarchize_topics(), infer_topics(), topics()

Examples

library(magrittr)

rdb::rfrnd(id = "5bbbe26a92a21351232dd73f") %$%
  rdb::hierarchize_topics_fast(unlist(topics_tier_1),
                               unlist(topics_tier_2),
                               unlist(topics_tier_3))
#> # A tibble: 3 × 3
#>   topic_tier_1       topic_tier_2 topic_tier_3               
#>   <chr>              <chr>        <chr>                      
#> 1 state organisation federalism   intergovernmental relations
#> 2 state organisation legal system fundamental rights         
#> 3 public finance     taxation     tax system                 

# hierarchize the topics of all Austrian referendums
rdb::rfrnds(quiet = TRUE) |>
  dplyr::filter(country_code == "AT") |>
  dplyr::group_split(id) |>
  purrr::map(~ rdb::hierarchize_topics_fast(unlist(.x$topics_tier_1),
                                            unlist(.x$topics_tier_2),
                                            unlist(.x$topics_tier_3)))
#> [[1]]
#> # A tibble: 2 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3         
#>   <chr>              <chr>             <chr>                
#> 1 state organisation federalism        territorial questions
#> 2 state organisation national identity NA                   
#> 
#> [[2]]
#> # A tibble: 0 × 3
#> # ℹ 3 variables: topic_tier_1 <chr>, topic_tier_2 <chr>, topic_tier_3 <chr>
#> 
#> [[3]]
#> # A tibble: 1 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3
#>   <chr>              <chr>             <chr>       
#> 1 state organisation national identity NA          
#> 
#> [[4]]
#> # A tibble: 1 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3
#>   <chr>              <chr>             <chr>       
#> 1 state organisation national identity NA          
#> 
#> [[5]]
#> # A tibble: 2 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3         
#>   <chr>              <chr>             <chr>                
#> 1 state organisation federalism        territorial questions
#> 2 state organisation national identity NA                   
#> 
#> [[6]]
#> # A tibble: 2 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3         
#>   <chr>              <chr>             <chr>                
#> 1 state organisation federalism        territorial questions
#> 2 state organisation national identity NA                   
#> 
#> [[7]]
#> # A tibble: 3 × 3
#>   topic_tier_1       topic_tier_2      topic_tier_3         
#>   <chr>              <chr>             <chr>                
#> 1 state organisation federalism        territorial questions
#> 2 state organisation national identity NA                   
#> 3 state organisation political system  NA                   
#> 
#> [[8]]
#> # A tibble: 1 × 3
#>   topic_tier_1 topic_tier_2   topic_tier_3
#>   <chr>        <chr>          <chr>       
#> 1 energy       nuclear energy NA          
#> 
#> [[9]]
#> # A tibble: 1 × 3
#>   topic_tier_1   topic_tier_2    topic_tier_3
#>   <chr>          <chr>           <chr>       
#> 1 foreign policy European policy EU          
#> 
#> [[10]]
#> # A tibble: 1 × 3
#>   topic_tier_1    topic_tier_2 topic_tier_3         
#>   <chr>           <chr>        <chr>                
#> 1 security policy army         military organisation
#> 
#> [[11]]
#> # A tibble: 1 × 3
#>   topic_tier_1    topic_tier_2 topic_tier_3         
#>   <chr>           <chr>        <chr>                
#> 1 security policy army         military organisation
#>